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The spans of an n-step random walk on a simple cubic lattice are the sides 
of the smallest rectangular box, with sides parallel to the coordinate axes, 
that contains the random walk. Daniels first developed the theory in outline 
and derived results for the simple random walk on a line. We show that the 
development of a more general asymptotic theory is facilitated by intro- 
ducing the spectral representation of step probabilities. This allows us to 
consider the probability density for spans of random walks in which all 
moments of single steps may be infinite. The theory can also be extended to 
continuous-time random walks. We also show that the use of Abelian 
summation simplifies calculation of the moments. In particular we derive 
expressions for the span distributions of random walks (in one dimension) 
with single step transition probabilities of the form P(j) ~ 1/j~+% where 
0 < ~ < 2. We also derive results for continuous-time random walks in 
which the expected time between steps may be infinite. 

KEY WORDS: Random walks; ordered spans; stable distributions; 
Abelian summation. 
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n-step random walk are defined to be the sides of the smallest (rectangular) 
box with sides parallel to the coordinate axes that entirely contains the random 
walk. Kuhn (2'3~ studied the same problem for continuous diffusion, in the 
context of polymer configurations. Daniels' and Kuhn's studies were followed 
by that of Feller, (~ who discussed the case of the one-dimensional random 
walk in greater detail. Feller's work was extended by Zaharov and Sar- 
monov, C5~ and Rubin (6~ has studied the same problem for the unrestricted 
random walk in the context of the configurations of polymer chains. Most 
recently Rubin and Mazur (v~ have obtained results on the properties of spans 
for both the unrestricted and the self-avoiding random walk. Properties of the 
ordered spans can be used as an alternative characterization of asymmetries 
in random walks to that proposed by So16 and Stockmayer Ca~ and studied 
further by So16. (9~ In a symmetric random walk the statistical properties of 
any one span are clearly the same as those for any other span. However, when 
the spans are ordered from smallest to greatest, the statistical properties of 
these ordered spans do differ; e.g., the expected value of the smallest span is 
obviously smaller than that of the largest one. 

In this paper we develop the theory of spans for unrestricted lattice 
random walks, both in discrete and continuous time in any number of 
dimensions. The present development allows for a simple derivation of 
asymptotic results (for large numbers of steps or at large time) and permits us 
to consider approximate calculation of the span distribution for random walks 
in which individual jump probabilities may have infinite variances. 

2. EXACT E X P R E S S I O N S  FOR THE S P A N  D I S T R I B U T I O N  

We begin by deriving several exact representations for the span distribu- 
tion that are useful in different circumstances. Consider a lattice random walk 
in n dimensions characterized by the single-step probabilities {p(j)}-- 
{P(J l ,  j2 ..... in)}. The function p(j) gives the probability of the random walker 
making a displacementj in a single step. We further define the structure factor 
h(0) by 

A(0)= ~ 2 "'" ~ p(j)exp(ij.0) (1) 
ffj_= --m j 2 = - - m  i n = - - ~  

where O = (01, 02 .... ,0,~). The state probability for the random walk, that is, 
the probability that the random walker is at position r after m steps, is given 
in terms of A(0) as 

Urn(r) = (2@)nf .~- f 3.m(0)exp(-ir.0)d~0 (2) 

We show, following Daniels, m that the distribution of spans can be expressed 
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in terms of the Urn(r). The use of the spectral representation in Eq. (2) allows 
us to find alternative and more convenient representations. 

Let pr(m) be the probability that at step r the span in direction i is rn~, 
i = I, 2 ..... n. This is the desired distribution. Let Fr(m) be the total number 
of ways that an r-step random walk can be characterized by the span vector m. 
A straightforward extension of the argument given by Daniels can be used to 
establish the relation 

A 2 A 2 A 2 F(--~ p , ( m )  = ml m2"" ml*rd") (3) 

between F~(m) and p~(m) so that pr(m) can be found from F,(m). In this last 
equation A 2 is just the second difference operator; A2g(m) = g(m + 2) - 
2g(m + 1) + g(m). Thus, we must find Fr(m). For this purpose we introduce 
functionsfi(;~; m), the number of random walks in which, f o r j  = 1, 2,..., n, 
the j th  coordinate has remained in the interval (-/~j, rnj - 1j) during all r 
steps. Then F,(m) can be expressed as 

m z  - l m n - l 

Fr(m) = ~ "'" ~ fr(Z;m) (4) 
hl=l hn:l 

Now the ~(Z; m) can be written in terms of the state probabilities at step r of 
a random walk in the presence of absorbing barriers at -Z and m - Z. Let 
the u,(k; m) be these probabilities, which are defined to satisfy 

u,(--Z; m) -- ur(m -- Z; m) = 0 (5) 

Theft(X; m) can be written in terms of the ur as 

m I - h n m l  - h n 

f i ( 7 , ;m)=  ~ ... ~ ur(k;m) (6) 
k l =  - - h  1 k n =  - - h  n 

It is the ur(k; m) that are most easily expressed in terms of the unrestricted 
probabilities, the U~(k). 

The u~(k; m) are solutions to a linear difference equation characterizing 
the random walk, subject to the boundary conditions in Eq. (5). Let us 
construct such a solution in terms of the unrestricted solutions, the Ur(k). 
Daniels gave a solution by means of images. We will give one by an algebraic 
technique. Let us first assume that the random walk is symmetric, which 
implies that U~(k) is invariant to a change in sign of any of the kj. Then 
consider the properties of the function 

G~(k; m ) =  2 "'" 2 U~(k + 2j.m) (7) 
j1 = --co in= --co 

The first property of interest is that Gr(k; m) is invariant to a change in sign 
of any kj, and the second is that Gr(k; m) is periodic in the k~, the period 
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being 2m~, i = 1, 2,..., n. Let Ls be an operator on the k that increases the 
argument ks by 2as. Then we assert that the u~(k; m) are given by 

u~(k; m) = (1 - L1)(1 - L2)...(1 - Ln)Gr(k; m) (8) 

For example, in two dimensions 

u~(k; m) = Gr(k~., k2) - Gr(ki + 2hi, k=) - G,(kl, k2 + 2a~) 

+ G,.(kl + 22,1, k2 + 2,~2) (9) 

where we have suppressed the m's in G~. It is easily verified from this expression 
for two dimensions that the u~(k; m) satisfy the absorbing boundary con- 
ditions, and since the G's are linear combinations of solutions to the equations 
describing the kinetics of the random walk, the u~(k; m) likewise satisfy these 
equations. The conclusion for general n follows by an inductive argument. 
It is also easily verified that the expression for the u~(k; m) in Eq. (8) is valid 
without any restriction to symmetric random walks. Unless otherwise stated, 
we restrict ourselves to the case of symmetric random walks. 

When Eqs. (3)-(8) are combined we find that F~(m) can be expressed as 

. . . .  E ' E E ' E 
] l = - m  j n = - m  AI=O An--O ~ 1 = 0  yn=O 

x U r ( y t -  a l + j i m l , y z -  A2 +j2m2 ..... y , , -  a,~ +j~rn,~) (10) 

generalizing Daniels' result to n > 1. A much more useful expression for 
p,.(m), the span distribution, can be derived by substituting the integral 
representation of U~(k) given in Eq. (2) into this last equation. The finite sums 
can be evaluated in closed form, leading to the expression for F~(m): 

'j J 
F~(m) = (27~)" "'" Y(0) V(ms, O~)d'~O (11) 

--~ 8=1 

where 

1 cos[(m + 1)0] 
V(rn, 0) = ~., ( - l y  cos(jmO) (12) 

1 -- cos0 s=-~o 

The sum in this last equation can and wilt be interpreted in terms of generalized 
functions. ~176 To go from Fr(m) to pr(m), one needs to take second differences 
as in Eq. (3). Since the V's factor in Eq. (11), we may take each second 
difference separately to find, finally, that 

p,(m) . . . .  A ' ( 0 )  W(rn,, 0s)d~0 (13) 

in which 

W(m, 0) = cot2(0/2) ~ (-1)s+1(1 - cosjO) cos[j(m + 1)0] (14) 
S= - c o  
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The n-dimensional generalization of Rubin's (6~ expression for pr(m) can be 
derived from Eq. (11) by using the identity 

( -  1) j cos(jx) = 2 3((x/27r) - I + �89 (15) 
y = - m  l = - r  

to find that 

pr(m) = " * ' m  "--, c~ 
s = l  \ k s ls 

a~(2rr(l~ + �89 2rr(12 + �89 27r(l. + �89 (16) 
\ ml m2 mn 

where the sums over l are over all integers such that the arguments are < 1 in 
absolute value. 

One can also find the generalization of these results to continuous-time 
random walks ~1~) quite simply. A continuous-time random walk is one in 
which the time between successive steps is a random variable with probability 
density function r Let r be the Laplace transform of r let p(m; t) 
be the distribution of spans at time t, and let p*(m; s) be the Laplace trans- 
form of this function. Since the Laplace transform of the probability that 
exactly r steps have been taken is 

[ r  - r 
we can combine this expression with that given in Eq. (13) to find that 

1 1 - r  = f W(m~, 0~) d,~8 
p * ( m ;  s )  = s 1 - (1 7) 

The above expressions for pr(m) are all exact, involving no approxima- 
tions. We now consider the asymptotic properties ofp~(m) and p(m; t) that 
are a consequence of their representations in terms of the structure functions 
A(0). For the random walks of interest here ]A(0)] < 1 for 0 # 0 and A(0) = I, 
so that the asymptotic behavior of p~(m) for large r is determined by the 
behavior of the integrand in Eq. (13) in a neighborhood of the origin. A first 
step in determining the asymptotic behavior is to expand W(m, O) for small 
j01. From the definition in Eq. (14) we find that 

W(m,O),.~ ~ - ~  + ~  + "'" j=_~( -1) '+~J2  ~ - - - 2 4  + ' ' "  

• cos[j(m + 1)0] 

,-~ 2 ~ ( -1)J+l j  2cos[j(m + 1)0] 
] =  - o o  

0 2 
3 . ~ ( -  1)J+~(2J2 + j4) cos[j(m + I)0] + ... (18) 
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When this expansion is substituted into Eq. (13) and account taken of the 
definition of state probabilities in Eq. (2), we find that 

pr (m)~ 8 '~ ~ ~ "" ~ (-1)Jl+J~+"'+s"+'j12jz2""j.2 
J l = l  ] 2 = 1  ] n = l  

x [Vr(j~(ml + 1),...,/(m,~ + 1)) 

+ 6~=1(]i2 + 2) ~ +l~.k~=j~<m~+l) ..... ~.=j.~m.+l~ 

(19) 

That is to say, the asymptotic properties of the p~(m) can be found in terms 
of the state probabilities, the Ur(k). 

3. PROPERTIES OF THE SPAN D I S T R I B U T I O N  IN ONE 
D I M E N S I O N  

The simplest results are those for the one-dimensional symmetric random 
walk. Let us first assume that all of the low-order moments are finite, i.e., 

j2p(j) = or2 < o c, ~ j4p(j)= v ~ < c ~  (20) 
j =  - c o  j =  -oo  

so that 

At(0) = exp[r In 2t(0)] ~ exp - 1 + - ~  (v ~ - 3or 4) + ... (21) 

Therefore by a familiar asymptotic argument Cl1~ we can write 

Ur(k) ~ ~ exp ~ -  2-7-~z) + ~ ( ~ -  3)[1 ra 22k2 

Notice that all of the terms in square brackets must be retained for con- 
sistency because k 2 can be O(r). The lowest order term is obtained by substi- 
tuting this last expression into Eq. (19) and is 

8 ~ ( _ l y + l j 2 e x p /  j2(m + 1) 2 ) 
p~(m) ~ (2wr~2)1/2 \ -  2re2 (23) 

J = l  

in the case of a symmetric random walk. When the random walk is asym- 
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metric such that the expected value of a single step is/,, then Eq. (23) is to be 
replaced by 

pr(m) ~ (2rrrc~2)ls2 ( -  exp - [j(m + 1) - r t ,  l 2 
j = l  

which is equivalent to centering the density given in Eq. (23) around r/~. 
When r is large and m is O(r ~/2) or less, the series in Eq. (23) converges 

poorly, and it is convenient to make a Poisson transformation ~1~ to speed 
convergence. For convenience we neglect the difference between m + 1 and 
m, which is of no consequence for large m. We then find, in terms of the 

variable x = m/(~/7) ,  

8 7 ~  [ ( 2 n +  l)2rr 2 1 ] e x p (  7r2(2n+ 1)2) (24) 
a~/rflr(m) 7~ ~ o  x2 2x~ 

with the corresponding cumulative distribution 

P~(m) ,.~ p~(u) du = ~ (2n + 1) 2 x 2 
t t = 0  

x exp( 7r2(2rt2X 2-+- 1)2) (25) 

Another expression useful for large x can be derived by directly integrating 
Eq. (23): 

Pr(m) ~ 1 + 2 2 ( - l y jer fc ( jx )  (26) 
j=l 

where 

f 
ar) 

erfc(z) = (2~r) - z/2 e x p ( -  u2/2) du (27) 
~ z  

The sum in Eq. (26) is rapidly convergent for x > 1 and is even useful for 
small x when an Euler transformation C12~ is applied to speed convergence. 

Asymptotic values (for large r) of the moments of m are easily found by 
integrating with respect to p~(m) as given in Eq. (23). In this way we find that 

fo 2 fo (m) ~ mpr(m) dm= ( -  1)J+lj 2 m exp - 2-7-~o 2 dm 
j = l  

_ 8a~/r 2 ( - l Y + I  (28) 
(2~-)  1/2 j=  

The remaining sum will be interpreted in the sense of Abel summation} TM 
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which identifies the sum 

a s  

In this sense we see that 

so that 

S = ~ a. (29) 
n = O  

S = lim 2 anxn (30) 
X~I- n=O 

2 ( - 1 )  j+l = lira - (31) 
X 1 

j=l x-.1 1 + x 2 

(m> = (Srcr2/Tr) 1/2 (32) 

in agreement with Daniels. (1) The corresponding expression for the variance 
is 

cr2(r) = (m2> - <m>2 ~ 4rcr2(ln 2 - 2) ~ 0.226rcr 2 (33) 

Higher order corrections can be found and are O(1/r) with respect to the first 
term. 

A similar argument can be given for the one-dimensional continuous- 
time random walk when the mean time between steps is finite. We specifically 
require the assumption that 

fo T = t4~(t) dt (34) 

is finite so that for small Is[ we can expand ~b*(s) as ~*(s) = 1 - sT + O(sT). 
The small-Is I behavior ofp*(m; s) is required for the behavior ofp(m; t) at 
large t/T. It follows from Eq. (17) that, to lowest order in sT, 

T f= W(m, O) dO 
p*(m; s) ,,- -~ __~ 1 - (1 - -sT)A(0) (35) 

Also, at large t/T only the lowest order terms in 0 can be used in this repre- 
sentation and the range of the integral can be extended to ( - ~ ,  ~) .  In this 
way we find for the symmetric random walk 

p * . ( m , s ) - 2  ~ ( _ l ) J + l j 2 f  ~ cos[j(m + 1)O]dO 
~r s + (~202/(2T2)) (36) 

j = l  ~ - o o  

If  we invert this term by term, we find that 

/ T \1,2 ( j2(m__+_l)2T~ 
1,(re, t) ~ 8(2--~2t) ~ ( -1)J+V2exp\  2cr2 t ] (37) 

j = l  
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This expression has the same form as the asymptotic result for pr(m) given in 
Eq. (23), when r is replaced by tiT. Higher order terms can be calculated by 
retaining higher powers of 0. Parenthetically, we note that when r is 
negative exponential, 

r = (l/T) e x p ( - t / T )  (38) 

the exact expression for p(m, t) is 

p(m, t) = ~r W(m, O) exp - T  [1 - a(0)] dO (39) 

and a complete expansion in terms of t i t  is easily found. The leading term is 
given in Eq. (37), and correction terms are O(T/t).  

If  we drop the assumption that the mean time between steps is finite, 
replacing it by the assumption that r has the expansion 

~*(s) = 1 - (sT) ~ + O(sT) (40) 

for IsTt small and a < 1, then the expression in Eq. (36) is replaced by 

p*(m, s) ,,, ( _  1)J+lj2s~_ cos[j(m + 1)0] dO 
= _ ~ s~ + (~202/(2T~)) (41) 

The inversion with respect to time of each term in the sum can be expressed 
in terms of a stable distribution, as Shlesinger ~ and Tunaley ~5~ have 
demonstrated. If  we define B~(z) to be the Mittag-Leflter function 

~o(z)  = 
( - 1 ) . z  ~. 

= 0 P(an + 1) (42) 

then p(m, t) takes the form 

p ( m , t )  ~.j~ ( -1)J+l j  2 _ I-/c~10l\2J~ t ]  
- - - ~  ~ [  t ~ )  TI  cos[j(,~ + ~)0] dO (43) 

An alternative form of this expression can be derived by making use of an 
identity cited by Feller. (a~ This result can be written in terms of the stable 
distribution F~(z), whose Laplace transform is 

f o  [exp(- dF~(z) = - s ~) (44) sz)] exp( 

This identity, attributed to H. Pollard, states that the Laplace transform of 
the distribution 

G~(fi; z) = l - F~(fi/z ~/~) (45) 

with respect to z, is B~(fis~l~). If  we insert this representation of B~(z) into 
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Eq. (43), the integration with respect to 0 can be performed, leading to the 
final expression 

p(m ,  t) ,.~ _1 1/2 0o --1)J+lj2exp 
O" ~ ' 0  "=  

j 2 ( m  + 1)2'~'~ 0 G~ , j dx 

(46) 

The asymptotic results given to this point all use the assumptions 
enumerated in Eq. (20), as do the analyses of earlier authors. It is of some 
interest to present some generalizations whose validity does not require the 
existence of the moments of jump probabilities. We start with a particular 
case for which results are available in closed form. Let 

3 1 
P(J)  = 7r--5 j-5' j = _+ 1, + 2 .... (47) 

Then A(0) can be represented in the neighborhood of the origin as 

h(0) ~ 1 - (30/~) (48) 

neglecting a term proportional to 02. The lowest order term in pr(m) will be 
obtained from the first term in the expansion given in Eq. (19), for which we 
need an expression for Ur(k) valid for large k. But this is easily found to be 

1 fo ~ 3r ( 4 9 )  UT(k) "~ g e -a~~ cos(k0) dO = rr2k 2 + 9r 2 

Hence the formal expression for the asymptotic pr(m) is 

pT(rn) ~ 24r 2 (-1)J+~ 
j 2 

j=l  9r2 + Ir2J2( m + 1) 2 

24r 2 [ 9r2 ] 
- 7r2(rn + 1) 2 ( -  1) '+1 1 - (50) j=l 9r 2 -4- zr2j2(m -4- 1) 2 

The first sum can be evaluated by Abelian summation and the second is 
convergent in the usual sense and can be evaluated in closed form. By 
combining the two results we find that 

36r 2 3r 
pr(m) ~ 7r2( m + 1) 3 cosech r n + l  (51) 

For r fixed and m large this probability goes like 

pr(m) ~ 12r/Tr2m e (52) 

which implies that (m> does not exist since p~(m) has too long a tail. In order 
to compare the properties ofp~(m) with and without finite variances, i.e., Eqs. 
(23) and (51), we calculate <ml/2> for both distributions. 
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In the case of the finite variance distribution we find that 

(ml/2} ,, ~ (2~rr~2) 1/28 ~ fo ~ , / / j2rn~\  ( _  1)/+ lj2 rn 1/2 e x p | -  2-7~2 } dm 
3"=1 

4 - ~/g (2r~2)~4P ( -  1)J+l~/) (53) 
j = l  

The formally divergent series can be evaluated by Abelian summation as 
shown in the appendix. In that sense we obtain the result 

~, ~ f o  ~~ -~j2et ( - l y + * ~ / )  = ~ dt = 0.3801+ (54) J : l  ( e~ + I) 2 

so that 
(rn */2) ,-~ 0.7031cr lj4 (55) 

On the other hand, for the model whose single-step jump probabilities are 
given by Eq. (47) the asymptotic behavior of (m ~/2) is 

(rnl,2) ~ 36~/r( |  1 dx _ 1 2 ( 3 ) l z 2 f o ~ v  l/z d/ 
rr2 Jo x~/2 sinh(3/x) ~.2 o-,-a" 

~r a/212 3 lj21 ( 1 \ [3~ 1/= - ,1 - ~7~)C[~]r = 2.101r 1/2 (56) 

where ~(3/2) is a Riemann zeta function. Thus the values of (m ~/2) show a 
different dependence on r, as expected. 

A different tack is required to find the asymptotic form for p~(rn) for the 
single-step jump probability 

1 1 
P(J) = 2~(1 + a ) l j [  1 + ~  (57) 

where 0 < a < 2. For the purpose of calculating pgm) we substitute the 
integral representation of U~(j(m + 1)) into the lowest order approximation 
in Eq. (21) and interchange orders of summation and integration, finding 

p~(m),.~ 2f~,~ hr(0)( ~ ( _  1)J+~j2 Cos[j(m + 1)0)dO (58) 
] =  - e t )  

But the identityin Eq. (15) implies that 

( -  1)J+~j 2 cos(jx) = ~ 8 - l - (59) 
/ = - m  l =  - m  

When this identity is substituted into Eq. (58) and the integrals evaluated, the 
following answer is obtained: 

8 x~ d 2 p~(m) [Ar( O) ]o= 2~z[l + (ll2)]l(m + l )  (60) 
(m + 1) 3 ,~>Z' o 
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where the upper limit of the sum must be set equal to oe to be consistent with 
the use of the small-0 approximation [cf. Eqs. (61) and (64)]. One can show 
that the expression in Eq. (60) is asymptotically normalized. For this purpose 
we use the form of ;~(0) valid for small, positive 0 

~(0) ~ 1 - bO a (61) 

where b is the constant (~7~ 

so that for large r 

,r 1 
b 2 sin(~ra/2) ~(1 + a)F(1 + a) (62) 

/V(0) ,~ exp( -  rbO ~) (63) 

The value of b is valid for p(j )  given exactly by Eq. (57). When p(j)  is only 
asymptotic to 1/[j[l+= the expressions we derive below are still valid but the 
parameter b then depends on the detailed form ofp(j) .  For convenience we 
set 

g(O) = (d2/dO2)[exp(-rbO~)] (64) 

Then, if we ignore the difference between m + 1 and m, we have 

fo L F( ~._~g l +  dm pr(rn) dm ~ 8 m-gz=0 m- 

= -~ vg(v) dv (l + {)2 = vg(v) dv (65) 
/ = 0  0 

This then implies that 

L pr(m) d m =  O(d2/dO2)[exp(-rbO~)] dO = 1 (66) 

where the last result follows from an integration by parts. 
A second representation of pT(m) given in Eq. (60) can be given as an 

integral over the probability density of a stable process C16~ of order a. Let 
f~(t) be this density defined so that 

fo ~ exp ( - s  ~) (67) e - Stf ~( t )dt 

The function d2[hT(O)]/dO 2 in Eq. (64) is therefore 

dZ['~r( O) ] f ~ dO 2 - (rb) 2j~ t2f.(t) exp[-(rb)ll~Ot ] dt (68) 
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and the resulting sum is just a geometric series. An evaluation of the series of 
exponentials yields 

_2~r(rb)l/~t(l �89 1 , [rr(rb)ll~t~ 
~ e x p (  ~ - ~ ] +  z=o ] = ~cosecn~- -~T-  f j (69) 

o r  

4 ]o pr(m) ~ ~ (rb) 2j~ t2f~(t) cosech dt (70) 

neglecting the difference between m and m + 1. Except for the cases (1~) 
a = 1/2 and 1, the evaluation o f f , ( t )  is a matter of some difficulty. When 
a = 1 this expression can be shown to reduce to Eq. (51). 

Equation (60) also allows us to find the asymptotic form for pr(m) for r 
large and m of the order of r TM or greater. For this purpose we convert the 
sum of Eq. (60) to an integral by the Euler-Maclaurin formula, (z2) finding 

g( O) dO + ~s  g m pT(m) ~ Im 

valid for 0 < a < 2. In continuous time, when the mean time between steps T 
is finite, the result analogous to the last equation can be obtained by replacing 
r by t/T. 

4. S P A N  D I S T R I B U T I O N S  IN H I G H E R  D I M E N S I O N S  

General expressions for the multidimensional span density are given in 
Eq. (13) for discrete time and in Eq. (19) for continuous time. The multi- 
dimensional theory is complicated by the fact that at sufficiently short time 
pr(m) does not factor in the m~. We will show that when the transition 
probabilities all satisfy the finiteness conditions 

crl2 = ~ ... ~ j 2p ( j ) <  o0 (72) 
] l  = - m . i  n = - m 

the span density is asymptotically factorable, so that important properties of 
pr(m) can be determined from the one-dimensional pr(m). Before we demon- 
strate this asymptotic separability, it is interesting to point out that in at least 
one case initial separability implies separability at all times. More precisely, 
we show, for a particular class of random walks in continuous time, that 

p(m; O) = ~ I  p,(m,; 0) (73) 
t = $  
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implies that 

p(m; t) = ~-~ p~(m~; t) (74) 
i=1  

Two conditions are required: that the time between successive steps have a 
negative exponential distribution, Eq. (38), and that the structure function be 
separable in the 0's, that is to say, 

A(e) --- Az(0~) + 

When these conditions are fulfilled, 

p(m; t) --- e-ttr]-- I 
l = l  

+ ... + a . (o . )  (75) 

p(m; t) can be expressed as 

l j'[ W(m,, O)e",'~ dO (76) 

for t > 0, which is the form given in Eq. (74). 
When these special conditions do not hold, separability can be demon- 

strated only in the asymptotic sense and only under some such assumption 
as that of Eq. (72). More precisely, if we assume that the following moments 

ix= -m in= -~ 

jl= ~co ]~= -co 

if= - oo in= - co 

are finite, 

(77) 

we can write, analogous to Eq. (22) for one dimension 

U~(k) (2~rr)~/2 exp m + __  + ... + 

[ 1 ~ (v, ~ 3)(1  2k '2+  1 k z ~  

where the prime on the last sum indicates that the term I = rn is omitted. If  we 
let q~(j; m) be the distribution in Eq. (23) with cr = ej, then the lowest 
approximation to p~(m) is just 

pr(m) = q~(1; m~)q,(2; m2) "" qr(n; m~) (79) 

That is, the joint distribution of spans can, in this case, be calculated by 
assuming that the spans are independent random variables. 

The result in Eq. (79) for the finite variance case allows us to study 
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Fig. 1. Probability densities for the smaller and larger 
spans in two dimensions. 
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n = 2  

1.2 I 
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O . 4  

0 
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statistical properties of the ordered spans reasonably simply. I f  we assume 
that ~1 = ~2 . . . . .  e,  = e, then, in terms of the function Pr(m) defined in 
Eq. (25), the probability density for the smallest and largest spans can be 
written, respectively, as 

Sr(m) = npr(m)[1 - P~(m)] "-1 
(so) 

L~(rn) = np~(m)P~-l(m) 

Formulas for the intermediate spans are also easy to write down. In Fig. 1 we 
have plotted St(m) and Lr(m) for n = 2. The probability density for the 
maximum is broader than that for the minimum, as might be expected on 
intuitive grounds. When n is increased, the probability density for the 
minimum narrows and becomes more and more concentrated at lower values 
o fm.  This is illustrated in Fig. 2. The distribution of the maximum span shifts 
to the right with increasing n and broadens. This is illustrated by the curves 
in Fig. 3. 

Fig. 2. Probabili ty densities for the smallest span in two 
and four dimensions. 
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Fig. 3. Probability densities for the largest span in 

two and four dimensions. 

To gain some idea of the variation of spans with time, we can calculate 
asymptotic moments of the expected largest and smallest span for an n- 
dimensional symmetric random walk using pr(m) from Eq. (23) and P~(m) 
from Eq. (25). We then have, for the averages of the smallest and largest spans, 
respectively, 

< S ( r ) >  ~ n ~o ~ 
(80 

<L(r)> ,'~ n --jo ~176 

where the second terms on the right-hand sides follow from the first by an 
integration by parts. The integrals can be evaluated numerically using the 
representation of P~(m) in Eq. (25), leading to results that are of the form 
<S(r)> = aneV'r and <L(r)> = b~v/r  for large r. The constants a~ and b~ 
depend only on the dimension n and are given for several values of n in 

mp,(m)[1 - P , ( r n ) ]  ~ - 1  dm = [1 - P ~ ( m ) ]  ~ dm 

f: mp~(m)P~-l(m) dm = [1 - P ~ n ( m ) l  dm 

Table  I, Va lues  for  the  Constants  a~ = 

S(r)/(a~c/-r) and b~ = L(r)/(aV'-r) f o r  D i f -  

f e r e n t  Values of  n. 

n an bn 

1 1.59577 1.59577 
2 1.33530 1.85624 
3 1.22675 2.00815 
4 1.16347 2.11479 
5 t .12059 2.19657 

10 1.01335 2.44388 
15 0.96403 2.58310 
20 0.93343 2.67925 
25 0.91178 2.75233 



The Theory of Ordered Spans of Unrestricted Random Walks 349 

Table I. Clearly a~ must decrease to zero with increasing n, and b~ must 
increase with n to or. Asymptotic results for the distribution of the largest span 
in the limit of large n can be derived from the theory of order statistics. (~9~ 
This theory can also be used to furnish upper bounds on the spans when r is 
large enough so that Eq. (23) can be used and al = a~ . . . .  = a~ = a. As an 
example of the results that can be obtained, let S~ be the largest of n spans, 
for which the mean of a single span is given in Eq. (22), and the variance in 
Eq. (23). Then the inequality 

is valid. Similarly it can be shown that 

t/2 n -  1 ]t~._2~1/2 (82) 
( 2 n - )  ] -  f i~/2 ' -~ ) 

{L(r)} >~ max{0, a~/r [ (8)  1 /2 -  ( l n 2 - 2 ) ( 2 2 - - - l l ) l / ~ J }  (83) 

At sufficiently large values of n, the second term in the brackets goes negative. 
In this paper we have dealt only with random walks on simple cubic 

lattices. The asymptotic theory that we have developed is valid for more 
general periodic lattices, but the correction terms necessarily depend on 
details of the lattice structure. 

A P P E N D I X .  E V A L U A T I O N  OF THE S U M  S= 

FOR O < a < l  

In order to evaluate the sum S~, we start from the representation 

1 1 - ~e- jt 
j l - a  -- r(1 - o,) t d t  

so that 

S=_l(x) = ~ ( - l Y  +z xj 1 ( ~  
xe-t 

j=l )T='~ = r(1 - cO Jo t-~ (1 + xe -~) dt 

From this result we have 

lim dS~_ 1 1 fo ~ e -  t s~ x- , l -  dx F(1 - a) t -~(1 + e- t )  2 

In particular Sljz is found to be that given in Eq. (54). 

= ~?=~ ( - l y  § p 

(A.]) 

(A.2) 

dt (A.3) 
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